Спустя несколько десятилетий вернулся к идее Гальвани швейцарский физиолог Эмиль Дюбуа-Реймон (Du Bois-Reymond, 1818–1896).
Его научная деятельность началась с того, что в 1841 году Иоганн Мюллер дал ему, тогда 22-летнему студенту третьего курса, тему для самостоятельной работы – повторить опыты Маттеуччи, который к тому времени стал уже академиком. Дюбуа увлёкся этой темой и в результате всю свою научную жизнь посвятил электрофизиологии. [7]
Обдумывая полученное от Мюллера задание, Дюбуа понял, что «повторить» опыты Маттеуччи не так-то просто: в те времена каждый учёный использовал уникальные приборы собственной конструкции, сопоставлять показания которых было практически невозможно. Поэтому Дюбуа, выполняя задание, одновременно поставил своей задачей разработать такое оборудование, которое позволило бы в разных лабораториях получать сравнимые результаты. В итоге он создал универсальный комплекс приборов, обслуживающий все основные этапы исследований: раздражение мышц и нервов, отведение возникающих в них биопотенциалов и их регистрацию.
Одна из проблем исследователей тех лет была в том, что они располагали только гальваническими источниками постоянного тока, а для экспериментов нужны были электрические импульсы. Созданный молодым учёным прибор для раздражения, который назывался «санный аппарат Дюбуа-Реймона», позволял строго дозировать раздражающее воздействие. Он представлял собой две катушки с большим числом витков; одна катушка могла выдвигаться из другой, скользя по специальным полозьям. К внутренней – первичной катушке присоединяли источник тока – гальванический элемент с известным напряжением. В цепь был включён прерыватель тока – молоточек Нефа, такой, какой позже использовали в электрическом звонке. Во вторичной катушке индуцировался ток, которым раздражали нерв или мышцу. Выдвигая одну катушку из другой можно было регулировать силу раздражающего тока; степень выдвижения катушек измерялась по специальной линейке. Теперь, если в статье по физиологии было написано: «Сила раздражения была равна 12 см», все понимали это однозначно. Подобные индукционные катушки использовались в биологических лабораториях вплоть до 50-х годов XX века, только тогда их вытеснили электронные генераторы тока.
Рисунок 9. Санный аппарат Дюбуа-Раймона
Другое техническое препятствие, с которым столкнулся Дюбуа состояло в том, что все гальванометры были сильно инерционными и не позволяли регистрировать кратковременные импульсные токи. Сам он разрешить его не смог, но это сделали его последователи.
Немного забегая вперёд расскажу, что в 1847 году Габриэль Ионас Липпман (Gabriel Lippmann; 1845-1921) изобретёт знаменитый капиллярный электрометр. С помощью этого остроумного прибора можно было с высокой точностью измерять чрезвычайно малые электрические потенциалы (до 0,1мВ). Этим устройством воспользовались Освальд, который применил его для развития теории электрического потенциала Нернста. Применяли его и Иоганн Мюллер и Дуглас Эдриан, которому, кстати принадлежат слова «история электрофизиологии определяется историей развития электроизмерительной аппаратуры».
Благодаря этому устройству известный французский физиолог Этьенн-Жюль Марей, в 1876 году получил первую кардиограмму сердца лягушки. И капиллярный электрометр стал главным инструментом электрокардиографии.
Но я почему-то не нашёл упоминаний о том, чтобы этот прибор был использован для исследования нервного импульса.
Усовершенствование, введённое Дюбуа для отведения биопотенциалов, также было очень существенным: он понял, что биопотенциалы некорректно отводить простыми медными проволочками, так как в месте соприкосновения металла с биологической тканью возникают потенциалы, вполне сравнимые с теми, которые предполагается измерить. Дюбуа разработал специальные электроды (их называют неполяризующимися), которые не создавали избыточной разности потенциалов.
Все эти, казалось бы, технические и потому второстепенные нововведения на самом деле сыграли немаловажную роль в науке. А исследования Дюбуа-Реймона, начатые им на студенческой скамье, стали выдающимся достижением науки того времени. Более того, они оказали существенное влияние и на уровень всех проводимых в то время работ по электробиологии, так как Дюбуа-Реймон широко пропагандировал и даже дарил свои приборы.
Собственные исследования Дюбуа-Реймона шли в двух основных направлениях: во-первых, он исследовал электричество, генерируемое живыми тканями (тут он продолжал линию Гальвани – Маттеуччи), во-вторых, он изучал законы действия тока как раздражителя нервов и мышц (здесь он развивал направление, начатое Фонтана и Вольта).
В 1843 году Дюбуа открыл ток повреждения в нерве. (Это был первый случай, когда электричество объективно зарегистрировали в нервах, гальванометры Маттеуччи были для этого недостаточно чувствительными.)
В 1849 году он показал, что и мозг, так же как нерв и мышца, обладает электрогенными свойствами.
Результаты своих исследований Дюбуа-Реймон изложил в трёх больших томах «Исследования по животному электричеству» (1848, 1849, 1869 гг.). Очевидно, в этих томах не все данные были получены лично Дюбуа. Но именно он был тем человеком, который привёл все све́дения о «животном электричестве» в систему, провёл колоссальную работу по их уточнению и восполнению недостающих деталей. Он описал, при каких условиях, где и на каких объектах можно наблюдать биопотенциалы, привёл их характеристики и т. д.
Кроме того, он предложил первое теоретическое объяснение потенциала повреждения. Дюбуа-Реймон полагал, что вдоль мышц и нервов тянутся цепочки особых «электромоторных» молекул. Каждая такая молекула представляет собой как бы два гальванических элемента, соединённых положительными полюсами, так что наружу ориентированы только отрицательные. Где бы ни рассечь мышцу, на разрезе обнажатся отрицательные полюса, чем и объясняется потенциал повреждения.
Здесь мы можем наблюдать пример того как биологическая гипотеза строится под влиянием аналогии с современной ей физической теорией: последним открытием в физике в это время сала теория Ампера о том, что свойства постоянных магнитов объясняются тем, что каждая молекула в нём является маленьким магнитиком.
Дюбуа-Реймон придумал, как теперь сказали бы, демонстрационную модель для проверки своей гипотезы. Он взял много маленьких гальванических элементов «медь – цинк», попарно соединил их положительными полюсами, укрепил на деревянной доске и, погрузив всю конструкцию в раствор соли, стал проводить на этой «искусственной мышце» такие же эксперименты, которые он проводил на мышце живой. Оказалось, что распределение потенциалов в такой модели действительно было сходно с распределением потенциалов у реальной мышцы.
Благодаря такой оригинальной демонстрации, и авторитету Дюбуа-Реймона, теория электромоторных молекул, несмотря на её фантастичность (и ошибочность), оставалась общепризнанной почти четверть века с момента её выдвижения в 1846 году. [7]