НЕЙРОТОН, занимательные истории о нервном импульсе (А.Волошин)

НЕЙРОТОН,   ОГЛАВЛЕНИЕ       

Молекула памяти

Исследования биохимического переноса памяти прекратились ещё в 1980-х. Доказательств так и не получили. Это было не первое разочарование, вспомним Карла Лешли отдавшего тридцать лет своей плодотворной жизни попыткам раскрыть природу «следа памяти» в мозге. Он безуспешно охотился за «энграмой» - записью этого следа, оставив, впрочем, свой личный след в истории нейронауки.

Несомненно, в памяти имеются материальные следы того, что звучало раньше или некогда совершалось в нашей жизни. Поиски этих «следов» не дают покоя и современным исследователям.

Меж тем, вплоть до 2006 года в умах исследователей преобладал некий пессимизм. Выяснилось, что наша память зависит от белков. Это было показано практически на всех животных путём блокады синтеза белка – при этом кратковременная память образуется, а долговременная нет. То есть новые белки должны синтезироваться, для того чтобы у нас сформировалась и сохранялась хоть какая-то память. Но дело в том, что время жизни белков – дни, максимум недели, и только редкие белки могут жить чуть дольше. 98% всех белков за 3–4 дня разлагаются и замещаются новыми. Их синтез идёт постоянно. То есть если где-то память и закодирована какими-то молекулами, то все они распадаются через несколько дней. А как мы знаем, наши воспоминания хранятся годами и десятилетиями.

Но в 2006 году сразу появилось несколько публикаций о молекуле, которую можно было бы назвать молекулой памяти. Это белковая молекула, которая контролирует силу синаптической передачи. Обнаружилось, что белок под названием протеинкиназа M-дзета (Protein kinase M zeta, PKMζ) способен к самовоспроизведению! Так, если эти молекулы появились в каком-то конкретном месте синапса, то это их количество именно в этом месте и сохраняется. Эти молекулы обладают способностью самовоспроизводить это увеличенное количество. В каком-то смысле этот процесс может быть основой запоминания.

А постоянное воспроизведение PKMζ обеспечивается следующим изящным механизмом: PKMζ «ловит» с помощью некоторых молекулярных каскадов свою собственную матричную РНК и таким образом синтезирует новую молекулу PKMζ, которая повторяет процесс. Таким образом появляются всё новые и новые клоны молекулы PKMζ. В результате она может бесконечно долго сохраняться в синаптической области.

Проблема на сегодняшний день в том, что у любого позвоночного животного десятки миллиардов нейронов, а каждый нейрон образует ещё дополнительно до десяти тысяч связей с соседями. При обучении в памяти, возможно, меняется только несколько тысяч связей из этих триллионов. Отследить или целенаправленно изменить конкретную синаптическую связь на сегодняшний день невозможно.

В ходе дальнейших исследований молекулярных механизмов памяти оказалось, что в процессе памяти участвует не одна молекула, а целое семейство сходных молекул. И они участвуют в разных формах памяти и с вовлечением разных медиаторов. Но суть остаётся та же: есть белковые молекулы, увеличение количества которых в совершенно определённой части нервной клетки вызывает надолго изменение эффективности работы синапса. [68]

Есть и другие возможные кандидаты в «молекулы памяти» – прионоподобные белки. Как и прионы, они имеют две конформации – нормальную и патологическую, причём стоит только одной молекуле прионоподобного белка перейти в патологическую конформацию, как все соседние молекулы такого белка сразу же тоже эту конформацию приобретают. Но в отличие от прионов, у прионоподобных белков патологическая конформация не приносит вреда клетке – просто, раз в неё перейдя, прионоподобные белки так навсегда в ней и остаются. Такой конформационный переход выглядит очень соблазнительно для нейрофизиолога, занимающегося молекулярными механизмами памяти: ведь переход прионоподобного белка в новую конформацию может как раз и обеспечивать запоминание, то есть навсегда метить запомнившие что-либо синапсы. Определённые подтверждения того, что прионоподобные белки действительно имеют отношение к памяти, уже получены (Amitabha Majumdar et al., 2012. Critical Role of Amyloid-like Oligomers of Drosophila Orb2 in the Persistence of Memory). При этом интересно, что некоторые молекулярные каскады таких прионоподобных белков, судя по всему, связаны с деятельностью PKMζ – то есть PKMζ, и прионоподобные белки могут оказаться звеньями одной цепи, обеспечивающей память.

Однако не всё так однозначно. Некоторые данные откровенно противоречат такой жёстко определённой роли PKMζ в процессах запоминания.

PS Одно из опровержений теорий, предполагающих существование молекул памяти, строится на том, что сли каждый образ памяти имеет свой собственный белок, мозг человека накопит около ста килограммов белков памяти – больше, чем вес среднего человека.

Весьма авторитетные противники гипотезы утверждают, что блокаторы белка PKMζ помимо него блокировали что-то ещё, и именно это «что-то» и было связано с памятью. То есть вопрос о причастности PKMζ к формированию памяти пока остаётся открытым.

Пока же вопрос технологии запоминания остаётся на уровне гипотез и дискуссий, ничто не мешает и нам пофантазировать или, если хотите, повыдвигать гипотезы.

<<<    164    >>>