Как это иногда случается, по удивительному стечению обстоятельств, описанная выше структура клеточной мембраны оказалась чрезвычайно схожей со структурой жидких кристаллов. А при более внимательном наблюдении оказалось, что некоторые типы ЖК схожи с биологическими мембранами и по своему составу на молекулярном уровне. Например, холестерические жидкие кристаллы, названные так поскольку наиболее распространённым кристаллом этого класса, является холестерин.
Жидкий кристалл – это такое агрегатное состояние, во время которого вещество одновременно обладает как свойствами жидкостей, так и свойствами кристаллов. То есть ЖК обладают текучестью, и вместе с тем им присуща анизотропия – различие свойств среды в зависимости от направления внутри неё (например, показатель преломления света, скорость звука или теплопроводность).
В 1888-м году австрийский ботаник Фридрих Рейнитцер (Фридрих Рихард Корнелиус Рейнитцер,1857-1927) обнаружил, что у некоторых типов кристаллов может быть две точки плавления, что позволило ему предположить наличие двух различных жидких состояний, в одном из которых вещество прозрачное, а в другом – мутное.
Озадаченный этим странным явлением, Рейнитцер отправил свои препараты холестерилбензоата немецкому кристаллографу Отто Леманну с просьбой помочь понять суть открытия. Исследовав их с помощью поляризационного микроскопа, Леманн обнаружил, что мутная фаза, наблюдаемая Рейнитцером, является анизотропной. Поскольку свойства анизотропии присущи твёрдому кристаллу, а вещество в мутной фазе было жидким, Леманн назвал его жидким кристаллом.
И хотя в 1904-м году Отто Леманн предоставил достаточно научных доказательств в пользу возможности существования жидких кристаллов, ещё долгие годы научное сообщество не признавало жидкие кристаллы как отдельное состояние вещества, потому что их существование разрушало аксиому о трёх возможных состояниях вещества: твёрдом, жидком и газообразном. Открытию просто не нашлось применения.
Между тем, это состояние является термодинамически стабильным фазовым состоянием и по праву наряду с твёрдым, жидким и газообразным, может рассматриваться как четвёртое состояние вещества.
Лишь полвека спустя, в 1963-м году американским изобретателем Джеймсом Фергюсоном было найдено применение одному из свойств жидких кристаллов – изменение цвета в зависимости от температуры. Фергюсон получил патент на изобретение, которое позволяло обнаруживать невидимые для глаз тепловые поля. С этого момента популярность жидких кристаллов начала расти.
В 1973 году фирма Sharp выпустила первый ЖК-калькулятор c дисплеем на основе DSM-LCD. Жидкокристаллические дисплеи стали применяться в электронных часах, калькуляторах, измерительных приборах.
Сегодня самое популярное применение ЖК – жидкокристаллические дисплеи. Часто их называют LCD-дисплеи, что есть сокращение английского термина «liquid crystal display». В век гаджетов они присутствуют практически в любом электронном устройстве: телевизоры, мониторы компьютеров, электронные книги, планшеты, телефоны и др.
Но давайте вернёмся к главной теме нашего повествования – биологической мембране.
Сегодня не принято называть мембрану жидкокристаллической, но вполне допускается, что она может находиться в одном из двух состояний:
Традиционно, наибольшее внимание исследованиям мембран уделяют именно нейробиологи. (Всё-таки нет окончательной ясности с распространением нервного импульса.)
В 2005 году Томас Хаймбург и Андрю Д. Джексон предположили, что в момент прохождения нервного импульса происходит изменение фазового состояния клеточной мембраны с твёрдого (гелевого) на жидкокристаллическое. Именно этим фазовым переходом они объясняли и изменение оптических свойств мембраны, и выделение-поглощение тепла при возбуждении нервного импульса, обнаруженного Ичиджи Тасаки, а также и диффузию ионов через мембрану.
Эта гипотеза была в штыки воспринята большинством научного сообщества. А критика идеи фазового перехода утянула на дно и саму идею жидкокристаллического состояния биологической мембраны. Между тем мало кто обратил внимание на одно из главных свойств жидких кристаллов – анизотропию – различие свойств в зависимости от направления.
Сколько степеней свободы у молекулы в липидном слое? Три. Но в направлении перпендикулярном поверхности мембраны свободы гораздо больше. То есть мембрана, оставаясь достаточно жёсткой конструкцией для сохранения формы клетки, может быть чрезвычайно мягкой и упругой при распространении механической волны вдоль аксона.