НЕЙРОТОН, занимательные истории о нервном импульсе (А.Волошин)

НЕЙРОТОН,   ОГЛАВЛЕНИЕ       

Исследования А. Ходжкина

Так, в 1961 году А. Ходжкин со своими помощниками Бекером и Шоу поставили очень красивый опыт. Ещё когда Джон Янг открыл гигантский аксон у кальмара, он заметил, что при надавливании на перерезанный аксон его содержимое выдавливается и остаётся пустая неповреждённая оболочка.

Важно, что вырезать гигантский аксон кальмара можно целиком, почти не повредив. Благодаря этому с ним можно проделать такую операцию – просто перерезать концы аксона, при этом его густая аксоплазма не вытекает наружу. Но если положить его на резиновую подложку и прокатать резиновым валиком, не трудно выдавить аксоплазму. При этом оболочка гигантского аксона (в том числе и мембрана) остаётся неповреждённой. Затем можно, вставив в отрезанный конец аксона стеклянную пипетку (канюлю), заполнить его раствором с заданным содержанием ионов. Потом можно заткнуть концы аксона «пробками» из густого масла, не проводящего ток.

Вот именно такие эксперименты начали ставить Ходжкин и его сотрудники. Оказалось, что при заполнении аксона искусственным раствором с концентрацией К+ аналогичной аксоплазме, на мембране возникал обычный потенциал покоя.

При одинаковой концентрации калия внутри волокна и в наружной среде, потенциал покоя в полном соответствии с формулой Нернста не возникал. Если же в аксон закачать обычную морскую воду, и поместить его в среду с высокой концентрацией калия, то полярность потенциала покоя меняется на противоположную; при этом величина потенциала соответствует формуле Нернста.

Эти эксперименты доказывали решающую роль мембраны в возникновении потенциала покоя – ведь протоплазма со всеми органеллами и белковыми молекулами попросту отсутствовала. Фактически подтверждена мембранная теория Бернштейна. Кстати, сегодня учёные научились создавать и искусственные мембраны. То есть можно исследовать ситуацию, в которой белковые насосы и каналы отсутствуют в мембране. Такая "искусственная клетка" продолжает вести себя как живая.

 

А в недалёком 1986 году Ходжкин продемонстрировал ещё один показательный эксперимент. Он искусственно создавал разрыв электролита в окружающей нервное волокно среде, что приводило к прерыванию нервного импульса.

Схема этого опыта такова. Средний участок нерва помещали в не проводящую электричество среду (наливали масло в среднее отделение ванночки). Как и ожидалось, возбуждение доходило только до этого участка и прерывалось.

Представляет интерес вторая часть опыта: жидкости в первом и третьем отделениях соединяли обыкновенной медной про́волочкой, при этом импульс, исчезнув на втором отрезке, появляется опять на конечном участке. Очевидно, что про́волочка служит проводником электрического тока замыкая электрическую цепь. (Хотелось бы увидеть продолжение эксперимента – не изолировать часть аксона в масле, а перерезать и соединить его части проводком.)

Эксперимент Ходжкина с разрывом электролита

Рисунок 48. Эксперимент Ходжкина с разрывом электролита

Казалось бы, всё, этот опыт доказывает чисто электрический характер передачи сигнала вдоль волокна. Но…

Давайте заменим масло на другой хороший диэлектрик – воздух. Впервые ещё Н. Е. Введенский продемонстрировал, способность нерва сохранять способность к проведению возбуждений при длительном (около 8 часов) раздражении в атмосфере воздуха. Даже при помещении нерва в атмосферу азота способность нерва к проведению некоторое время сохраняется, хотя и быстро падает.

Что же касается масла, то теперь-то мы знаем, что мембрана нейрона состоит из липидов – жироподобных молекул, может в этом секрет описанного опыта?

<<<    121    >>>